Solution: (1) because DB=DF? ∴∠DBF=∠F?
Because af ∨ BC ∴∠ CBF = ∠ F.
∴∠DBF=∠CBF? That is, BF bisection ∠DBC
(3) because of Germany ∨ BC? DE=CD=BC again
∴ quadrilateral BCED is a parallelogram.
∴BD∥CE∴∠EGF=∠DBF
Also ∠DBF=∠CBF
∴∠EGF=∠F
∴EG=EF
(4) Because DF=DB=√(2)DC=√(2)
Germany =DC= 1
∴EG=EF=DF-DE=√(2)- 1
(2) If DI⊥CE is in I, then ∠ FDI = 45,
Because DE=DA? ∠CDE=RT∠? ∴∠DEC=45
From (1), ∠ f = ∠ DBF = 45/2 = 22.5
∴∠DHG=90-22.5=67.5
Obviously di/de =1√ (2) = √ (2)/2.
EG=√(2)- 1 from (4)
GI =(CE/2)-EG =√(2)/2-(√(2)- 1)= 1-(√(2)/2)
∴gi/ge=[ 1-(√(2)/2)]/(√(2)- 1)=√(2)/2
∴DI/DE=GI/GE
∴GD equally divided
∴∠EDG=45/2=22.5 =∠F
∴GD=GF
∴∠GDH=90-22.5=67.5 =∠DHG
∴GD=GH
∴DG=HG=GF.
(5) Because S△DCE= 1/2? 1? 1= 1/2
S△DGE/S△DEC = GE/CE =(√( 2)- 1)/√(2)
s△DGE/( 1/2)=(√( 2)- 1)/√(2)
∴S△DGE=(2-√(2))/4