Divide a line segment into two parts so that the ratio of one part to the total length is equal to the ratio of the other part to this part. Its ratio is an irrational number, and the approximate value of the first three digits is 0.6 18. Because the shape designed according to this ratio is very beautiful, it is called golden section, also called Chinese-foreign ratio. This is a very interesting number. We use 0.6 18 to approximate it, and we can find it by simple calculation:
1/0.6 18= 1.6 18
( 1-0.6 18)/0.6 18=0.6 18
This kind of value is not only reflected in painting, sculpture, music, architecture and other artistic fields, but also plays an important role in management and engineering design.
Golden section:
More than 2000 years ago, Odox Sass, the third largest mathematician of Athens School in ancient Greece, first proposed the golden section. The so-called golden section refers to dividing a line segment with length L into two parts, so that the ratio of one part to the whole is equal to the ratio of the other part. The simplest way to calculate the golden section is to calculate the ratio of the last two numbers of Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 2 1, ... 2/3, 3/5, 4/8, 8/655.
Around the Renaissance, the golden section was introduced to Europe by Arabs and was welcomed by Europeans. They called it the "golden method", and a mathematician in Europe17th century even called it "the most valuable algorithm among all kinds of algorithms". This algorithm is called "three-rate method" or "three-number rule" in India, which is what we often say now.