2.
three
Prove: connecting OB, OM⊥AB with intersection O of m, ON⊥BC of n.
∫∠ABC = 60
∴∠bac+∠acb= 180-∠abc= 120
∵AD bisection ∠BAC, CE bisection ∠ACB
∴∠OAC=∠BAC/2,∠OCA=∠ACB/2
∴∠aoc= 180-(∠oac+∠oca)= 180-(∠bac+∠acb)/2= 120
∴∠DOE=∠AOC= 120
∴∠ABC+∠DOE= 180
∠∠od b+∠OEB+∠ABC+∠DOE = 180
∴∠ODB+∠OEB= 180
∠∠OEB+∠OEA = 180
∴∠OEA=∠ODB
There are also ∵AD split ∠BAC, CE split ∠ACB.
∴O is the intersection of the bisector of the angle △ABC.
∴OB split equally ∠ABC
∵OM⊥AB,ON⊥BC
∴OM=ON,∠OME=∠OND=90
∴△OME≌△OND? (AAS)
∴OE=OD
Answer hard. That's it.