The domain of ∵ function is (0, +∞).
∴a^x-kb^x>; The solution set of 0 is exactly (0, +∞), (note the key word: exactly)
When x=0, an x-kb x = 0-kb 0 = 0,
That is, 1-k=0, ∴k= 1
Therefore, f (x) = ln (a x-b x), (a>1> b & gt0);
The function f(x) takes a positive value in (1, +∞).
∴f( 1)=0,
That is ln(a-b)=0,
∴a-b= 1,a=b+ 1,
f(x)=ln[(b+ 1)^x-b^x],(0<; b & lt 1);
∫f(3)= ln4,
∴ln[(b+ 1)^3-b^3]=ln4
(b+ 1)^3-b^3=4
(b^3+3b^2+3b+ 1)-b^3=4
3b^2+3b-3=0
b^2+b- 1=0
To solve a quadratic equation with one variable,
b=(- 1 √5)/2,
∫0 & lt; b & lt 1,
∴b=(√5- 1)/2,
At this time a=b+ 1=(√5+ 1)/2,
So there are real numbers a=(√5+ 1)/2 and b=(√5- 1)/2.