u-uxy=y-x,
∴u+x=(ux+ 1)y,
∴y=(u+x)/(ux+ 1), substituting into the known conditions, we get
- 1 & lt; x & lt(u+x)/(UX+ 1)& lt; 1,
& lt= = & gt- 1 & lt; x,(ux^2-u)/(ux+ 1)<; 0,(ux+ 1-u-x)/(ux+ 1)>0,①
x^2- 1<; 0,UX+ 1-u-x =( 1-u)( 1-x),
∴①<; = = & gt- 1 & lt; x,u/(ux+ 1)>0,( 1-u)/(ux+ 1)>0,
& lt= = & gtUX+ 1 & gt; 0,0 & lt; U< 1, in order to find.