4. If you choose D, you have it.
y ”+ Acos2x+Bsin2x = cos2x,
y″=( 1-A)cos2x-Bsin2x
∫y = Acos2x+bsin 2x,
∴y′=-2asin2x+2bcos2x
y″=-4Acos2x-4Bsin2x
The corresponding coefficients are equal, (1-a) =-4a, and a =-1/3;
-B=-4B,B=0,
A special solution is: y =-( 1/3) cos2x.
Therefore, y'=(2/3)sin 2x.
y″=(4/3)cos2x
y "+ y = y "-( 1/3)cos2x =(4/3)cos2x-( 1/3)cos2x = cos2x
y ”+ y = cos2x
Whether the restore verification is correct,
6, y "-2y'+y”-2y '+5y =(e x)cos2x, the special solution form is y = (e x) y = (e x) (acos2x+bsin2x), and its principle is similar to that of the four questions, all of which are undetermined coefficient methods, and the option is B.
y=(e^x)(acos2x+bsin2x)=a(e^x)cos2x+b(e^x)sin2x,
5y= 5A(e^x)cos2x+ 5B(e^x)sin2x
y′= a[(e^x)cos2x-2(e^x)sin2x]+b[(e^x)sin2x+2(e^x)cos2x]
=(a+2b)(e^x)cos2x+(-2a+ b)(e^x)sin2x
y″=(a+2b)[(e^x)cos2x-2(e^x)sin2x]+(-2a+ b)[(e^x)sin2x+2(e^x)cos2x]
=[(a+2b)+2(-2a+b)](e^x)cos2x+[-2(a+2b)+(-2a+ b)]
=(-3a+4b)(e^x)cos2x-(4a+3b)(e^x)sin2x
y″-2y′+5y=[(-3a+4b)(e^x)cos2x-(4a+3)(e^x)sin2x]
-2[(a+2b)(e^x)cos2x+(-2a+ b)(e^x)sin2x]
+[5A(e^x)cos2x+ 5B(e^x)sin2x]
=[(-3a+4b)-2(a+2b)+5](e^x)cos2x
+[-(4a+3b)-2(-2a+b)+5](e^x)sin2x
=(-5a+5)(e^x)cos2x+(-5b+5)(e^x)sin2x=(e^x)sin2x
The corresponding coefficients are equal, (-5a+5) = 1, a = 4/5; (-5B+5)=0,B= 1
y=(e^x)(acos2x+bsin2x)=(4/5)(e^x)cos2x+(e^x)sin2x,
7、y″-4y′+4y = 6x? +8e^2x
The form of the special solution is: y=Ax? +Bx+C+Dx? E^2x, choose b, C=0,
The corresponding coefficients are equal, 4A=6, a = 3/2; (2A-4B)=0,A=2B,B = 3/4; 2D=8,D=4 .
The solution is A=3/2, A=2B, b = 3/4; c = 0; D=4 .
t= Dx? e^2x
t′=2dxe^2x+ 2dx? e^2x
t″=2De^2x+8Dxe^2x+ 4Dx? e^2x]
t″-4t′+4t
=[2De^2x+8Dxe^2x+ 4Dx? e^2x]-4[2Dxe^2x+ 2Dx? e^2x]+4Dx? e^2x
=2De^2x+(8-8)Dxe^2x+(4-8+4)Dx? e^2x
=8e^2x,
2D=8,D=4