The reasons are as follows: ∫△ABC is an equilateral triangle, and point E is the midpoint of AB.
∴ae=be; ∠BCE=30,
ED = EC,
∴∠ECD=∠D=30,
∫∠ABC = 60,
∴∠DEB=30,
∴db=be=ae;
(2)AE=DB .
As shown in figure 2, point E is EF∨BC, and point AC is point F,
∫EF∨BC,
∴∠AEF=∠ABC=60,∠AFE=∠ACB=60,
∫△AEF is an equilateral triangle, AE=EF=AF,
∴BE=CF,
ED = EC,
∴∠ECD=∠D,
And ≈ECF = 60-∠ECD, ∠ Debu = ∠ EBC-∠ D = 60-∠ D,
∴∠ECF=∠DEB,
∴△BDE≌△FEC,(SAS)
∴BD=EF=AE。