∫(x? +seconds? x)dx=( 1/3)x? +tanx+C
∫[ 1/(2x-3)]dx=( 1/2)∫[ 1/(2x-3)]d(2x-3)=( 1/2)ln∣2x-3∣+c
∫sin(x/2)dx = 2∫sin(x/2)d(x/2)=-2cos(x/2)+C
∫dx/( 1+√x); Let x=u, then x = u? ,dx = 2udu
So the original formula = 2 ∫ udu/(1+u) = 2 ∫ [1-1(1+u)] du = 2 [u-ln1.
∫xe^(3x)dx=( 1/3)∫xd[e^(3x)]=( 1/3)[xe^(3x)-∫e^(3x)dx]=( 1/3)e^(3x)-∫e^(3x)d(3x)
=( 1/3)e^(3x)-e^(3x)+c=-(2/3)e^(3x)+c
-2,- 1∫( 1+2x)? dx=-2,- 1( 1/2)∫( 1+2x)? d( 1+2x)=( 1/6)( 1+2x)? -2,- 1=-( 1/6)+9/2= 13/3
0, 1/2∫arcsinxdx =[xarcsinx+√( 1-x? )]0, 1/2=π/6+(√3/2)- 1
0, 1/4∫xdx/√( 1-2x)=0, 1/4-∫xd √( 1-2x)=-[x √( 1-2x)-∫√( 1-2x)dx]0, 1/4
=-[x √( 1-2x)+( 1/2)∫√( 1-2x)d( 1-2x)]0, 1/4
=-[x √( 1-2x)+( 1/3)x √( 1-2x)+√( 1-2x)? ]0, 1/4
=-[ 1/(4√2)+ 1/( 12√2)+ 1/(2√2)]+ 1=( 12+5√2)/ 12
(1). Find the differential equation 2xy+x? General solution of y' = (1-x) y.
Solution: x? Y'=y-3xy, that is, (3xy-y)dx+x? dy=0...........( 1);
Where P=3xy-y and Q=x? ; ? P/? y = 3x- 1≦? Q/? X=2x, so the original equation is not a fully differential equation.
But (1/Q) (? P/? You-? Q/? x)=( 1/x? )(3x- 1-2x)=(x- 1)/x? =G(x) is a function of x,
So there is an integral factor μ (x) = e ∫ g (x) dx = e ∫ [(1/x)-(1/x? )]dx=e^(lnx+ 1/x)=xe^( 1/x);
Multiply μ(x) by [(3xy-y) Xe (1/x)] dx+[x? e^( 1/x)]dy=0..........(2)
At this time, p = (3xy-y) xe (1/x); Q=x? e^( 1/x);
P/? y=(3x- 1)xe^( 1/x)=? Q/? x=3x? e^( 1/x)-xe^( 1/x)=(3x- 1)xe^( 1/x); Therefore, (2) is a fully differential equation.
(2) On the left is the function u(x, y) = ∫ [(3xy-y) xe (1/x)] dx = yx? Total differential of e (1/x). Because:
Du = (? u/? x)dx+(? u/? y)dy=y[(3x? -x]e^( 1/x)dx+x? E (1/x)] dy = (2) left.
What about implicit functions? yx? E (1/x) = c is the general solution of the original equation.
(2) Find the general solution of the differential equation y''+2y'+y = e (-x).
Solution: The characteristic equation of homogeneous equation y''+2y'+y=0 is R? +2r+ 1=(r+ 1)? =0, with multiple roots r? =r? =- 1;
So the general solution of homogeneous equation is y=(C? +C? x)e^(-x)
Let's find a special solution y *;; Using the undetermined coefficient method: let the special solution be y*=ax? e^(-x)
(y*)'=2axe^(-x)-ax? e^(-x)=(2ax-ax? )e^(-x)
(y*)''=(2a-2ax)e^(-x)-(2ax-ax? )e^(-x)=(2a-4ax+ax? )e^(-x)
Substitute into the original formula (2a-4ax+ax? )e^(-x)+2(2ax-ax? )e^(-x)+ax? e^(-x)=e^(-x)
(2a-4ax+ax? )+4ax-2ax? +ax? = 1
That is, 2a= 1, so a= 1/2, that is, the special solution is y*=( 1/2)x? e^(-x)
So the general solution of the original equation is: y=(C? +C? x)e^(-x)+( 1/2)x? e^(-x)=[C? +C? x+( 1/2)x? ]e^(-x)