Current location - Training Enrollment Network - Mathematics courses - Mathematics compulsory four chapter one
Mathematics compulsory four chapter one
1, a, b and c are the interior angles of a triangle. It is known that1+cos2a-cos2b-cos2c = 2sinbsinc. The solution of finding angle A is1+cos2a-cos2b-cos2c = 2sinbsinc2cos? A- 1-2cos? B+ 1+2sin? C = 2sinBsinCcos? A-cos? B+ crime? (A+B)=sinBsinCcos? A-cos? B+ crime? Acos? b+2 sinosasinbcosb+cos? Asin? B=sinBsinCcos? A-cos? Acos? b+2 sinosasinbcosb+cos? Asin? B=sinBsinC2cos? asin b+2 sinosacosb = sin( 180-A-B)

2 cosa(cosa sinb+Sina cosb)-sin(A+B)= 0

Sin(A+B)(2cosA- 1)=0

cosA= 1/2

A=60

2. Prove: (1+sinα+cosα+2sinα cosα)/(1+sinα+cosα) = sinα+cosα.

& lt = =>1+Sina +cosa+2 Sina cosa = Sina +cosa+ (Sina +cosa)?

& lt= = = & gt 1+Sina+cosa+2 Sina cosa = Sina+cosa+ 1+2 Sina cosa

& lt = =>0 = 0 hold.

The above steps are reversible and the original proposition holds.

Certificate of completion

3. In △ABC, sinB*sinC=cos? (A/2), what is the shape of △ABC?

Simbuxin (180-a-b) = (1+COSA)/2.

2sinBsin(A+B)= 1+cosA

2 sinb(Sina cosb+cosA sinb)= 1+cosA

sin2BsinA+2cosAsin? B-cosA- 1=0

sin2BsinA+cosA(2sin? B- 1)= 1

sin2BsinA-cosAcos2B= 1

cos2BcosA-sin2BsinA=- 1

cos(2B+A)=- 1

Because a and b are the inner angles of a triangle.

2B+A= 180

Because A+B+C= 180.

So B=C

Triangle ABC is an isosceles triangle

4. Find the maximum and minimum values of the function y=2-cos(x/3), and write the set of x that makes this function get the maximum and minimum values respectively.

- 1≤cos(x/3)≤ 1

- 1≤-cos(x/3)≤ 1

1≤2-cos(x/3)≤3

range

When cos(x/3)= 1, that is, x/3=2kπ, that is, x=6kπ, the minimum value of y is 1 {x | x = 6kπ, k ∈ z}.

When cos(x/3)=- 1, that is, x/3=2kπ+π, that is, x=6kπ+3π, the minimum value of y is 1 {x | x = 6kπ+3π, k ∈ z}.

5. Given △ABC, if (2c-b)tanB=btanA, find the angle a..

[(2c-b)/b]sinB/cosB=sinA/cosA

Sine theorem c/sinC=b/sinB=2R substitution

(2sinC-sinB)cosA=sinAcosB

2 sin(A+B)cosA = Sina cosb+cosA sinb

2sin(A+B)cosA-sin(A+B)=0

sin(A+B)(2cosA- 1)=0

sin(A+B)≠0

cosA= 1/2

A=60 degrees

6. Verification of known 2cosx=3cosy: 3cosx-2cosy/2siny-3sinx = tan (x+y)

Proof: 3cosx-2cosy/2siny-3sinx = tan (x+y)

& lt= = & gt(3 cosx-2 cosy)/(2 siny-3 sinx)= sin(x+y)/cos(x+y)

& lt= = & gt(3 cosx-2 cosy)/(2 siny-3 sinx)=(sinx cosy+cosx siny)/(cosx cosy-sinx siny)

& lt= = & gt3cos? xcosy-3cosxsinxsiny-2cosxcos? y+2 sinxcosxsiny = 2 sinxsinysy+2 sin? ycosx-3sin? xcosy-3sinxcosxsiny

& lt= = & gt3cos? xcosy+3sin? xcosy=2sin? ycosx+2cos? ycosx

& lt= = & gt3cosy (sin? x+cos? x)=2cosx(sin? y+cos? y)

& lt= = & gt3cosy=2cosx known.

So the above steps are reversible.

The original claim was established.

9、π/4 & lt; a & lt3π/4

0 & lta-π/4 & lt; π/2

A-π/4 is the first quadrant angle.

So sin(a-π/4)=√[ 1-cos? (a-π/4)]=√48/7

cos(a-π/4)= 1/7

-π/4 & lt; b & ltπ/4

π/2 & lt; 3π/4+b & lt; Pi?

So 3π/4+b is the second quadrant angle.

So cos (3 π/4+b) =-75/ 14.

sin(a+b)=-cos(a+b+π/2)=-cos(a-π/4+b+3π/4)

= sin(a-π/4)sin(b+3π/4)-cos(a-π/4)cos(b+3π/4)

=√48/7× 1 1/ 14+ 1/7×√75/ 14

=√3/2

π/4 & lt; a & lt3π/4

-π/4 & lt; b & ltπ/4

0 & lta+b & lt; Pi?

So a+b=π/3 or 2π/3.

10. In acute triangle ABC, A, B and C are opposite sides called A, B and C respectively, C is 60 degrees, c= root number 7, and the area of triangle ABC is 3* root number 3/2. Find the value of a+B.

S triangle ABC = 1/2 ABS Inc.

3√3/2= 1/2absin60

ab=6

cosine theorem

cosC=(a? +b? -c? )/(2ab)

cos60=(a? +b? -7)/(2×6)

Answer? +b? =7+6

Answer? +b? = 13

(a+b)? -2ab= 13

(a+b)? =25

a+b=5

Because a>0, b>0

1 1, triangle ABC, COSA = 12/ 13, COSB =-3/5, then sinC.

cosA= 12/ 13

So a is an acute angle.

Sin? A= 1-cos? a = 1- 144/ 169 = 25/ 169

Sina =5/ 13

cosB=-3/5

So b is an obtuse angle.

Sin? B= 1-cos? B= 1-9/25= 16/25

sinB=4/5

sinC = sin( 180-A-B)= sin(A+B)= Sina cosb+cosa sinb

=5/ 13×(-3/5)+ 12/ 13×4/5

=- 15/65+48/65

=33/65

involve