X ~ b (n, p), where n ≥ 1, 0.
p{x=k}=c(n,k)*p^k*( 1-p)^(n-k),k=0, 1,...,n。
EX=np,DX=np( 1-p)。
Proof method (1):
X is decomposed into the sum of n independent random variables, all of which obey the distribution of (0- 1), and the parameter is p:
X=X 1+X2+...+Xn,Xi~b( 1,p),i= 1,2,...,n。
P{Xi=0}= 1-p,P(Xi= 1)=p
EXi=0*( 1-p)+ 1*p=p,
e(xi^2)=0^2*( 1-p)+ 1^2*p=p,
dxi=e(xi^2)-(exi)^2=p-p^2=p( 1-p).
EX=EX 1+EX2+...+EXn=np,
DX=DX 1+DX2+...+DXn=np( 1-p)。
Proof method (2):
EX =∑kb(k; n,p)=∑k*C(k,n)p^kq^(n-k)
=np∑c(k- 1,n- 1)p^(k- 1)q^(n- 1-k+ 1)
=np∑c(k,n- 1)p^kq^(n- 1-k)
= NP∑b(k; n- 1,p)
=np
DX=npq can be obtained by the formula dx = ex 2-(ex) 2.
ex^2=∑k^2b(k; Noun, noun)
=∑[k(k- 1)+k]b(k; Noun, noun)
=∑k(k- 1)b(k; n,p)+∑kb(k; Noun, noun)
=n(n- 1)p^2∑b(k; n-2,p)+np
=n(n- 1)p^2+np=n^2p^2+npq
=n^2p^2+npq
So dx = ex 2-(ex) 2 = n 2p 2+NPQ-n 2p 2.
=npq