1, has a good interest in learning.
(1) preview before class, and have doubts and curiosity about what you have learned.
(2) Cooperate with the teacher in class to satisfy the excitement of the senses. In class, we should focus on solving the problems in preview, regard the teacher's questions, pauses, teaching AIDS and model demonstrations as appreciating music, answer the teacher's questions in time in class, cultivate the synchronization of thinking and teachers, improve the spirit, and turn the teacher's evaluation of your questions into a driving force to spur learning.
(3) Think about problems, pay attention to induction, and tap your learning potential.
(4) Pay attention to the teacher's mathematical thinking when explaining in class, and ask yourself why you think so, and how this method came into being.
(5) Let the concept return to nature. All disciplines are summarized from practical problems, and mathematical concepts are also returned to real life, such as the concept of angle, the generation of polar coordinate system and the generation of polar coordinate system are all abstracted from real life. Only by returning to reality can the understanding of concepts be practical and reliable and accurate in the application of concept judgment and reasoning.
2. Establish a good habit of learning mathematics.
Habit is a stable and lasting conditioned reflex and a natural need consolidated through repeated practice. Establishing a good habit of learning mathematics will make you feel orderly and relaxed in your study. The good habits of high school mathematics should be: asking more questions, thinking hard, doing easily, summarizing again and paying attention to application. In the process of learning mathematics, students should translate the knowledge taught by teachers into their own unique language and keep it in their minds forever. In addition, we should ensure that there is a certain amount of self-study time every day, so as to broaden our knowledge and cultivate our ability to learn again.
3. Consciously cultivate your abilities in all aspects.
Mathematical ability includes five abilities: logical reasoning ability, abstract thinking ability, calculation ability, spatial imagination ability and problem solving ability. These abilities are cultivated in different mathematics learning environments. In the usual study, we should pay attention to the development of different learning places and participate in all beneficial learning practice activities, such as math second class, math competition, intelligence competition and so on. Usually pay attention to observation, such as the ability of spatial imagination is to purify thinking through examples, abstract the entities in space in the brain, and analyze and reason in the brain. The cultivation of other abilities must be developed through learning, understanding, training and application. Especially in order to cultivate these abilities, teachers will carefully design "intelligent courses" and "intelligent questions", such as multi-media teaching such as solving one question, training classification by analogy, applying models and computers, which are all good courses to cultivate mathematical abilities. In these classes, students must devote themselves to all aspects of intelligence and finally realize the all-round development of their abilities.
Other preventive measures
1, turn your attention to ideological learning.
People's learning process is to understand and solve unknown knowledge with mastered knowledge. In the process of mathematics learning, old knowledge is used to lead out and solve new problems, and new knowledge is used to solve new knowledge when mastered. Junior high school knowledge is the foundation. If you can answer new knowledge with old knowledge, you will have the idea of transformation. It can be seen that learning is constantly transforming, inheriting, developing and updating old knowledge.
2. Learn the mathematical thinking method of mathematics textbooks.
Mathematics textbooks melt mathematics thoughts into mathematics knowledge system by means of suggestion and revelation. Therefore, it is very necessary to sum up and summarize mathematical thoughts in time. Summarizing mathematical thought can be divided into two steps: one is to reveal the content law of mathematical thought, that is, to extract the attributes or relationships of mathematical objects; The second is to clarify the relationship between mathematical ideas, methods and knowledge, and refine the framework to solve the whole problem. The implementation of these two steps can be carried out in classroom listening and extracurricular self-study.
Some Suggestions on Learning Mathematics
1, take math notes, especially the different aspects of concept understanding and mathematical laws, as well as the extra-curricular knowledge added by the teacher to prepare for the college entrance examination.
2. Establish a mathematical error correction book. Write down error-prone knowledge or reasoning in case it happens again. Strive to find wrong mistakes, analyze them, correct them and prevent them. Understanding: being able to deeply understand the right things from the opposite side; Guo Shuo can get to the root of the error, so as to prescribe the right medicine; Answer questions completely and reason closely.
3. Memorize mathematical laws and conclusions.
4. Establish a good relationship with classmates, strive to be a "little teacher" and form a "mutual aid group" for math learning.
5. Try to do extra-curricular math problems and increase self-study.
6. Repeatedly consolidate and eliminate forgetting before school.
7. Learn to summarize and classify. Ke: ① Classification from mathematical thoughts, ② Classification from problem-solving methods and ③ Classification from knowledge application.
Learning first, every student can do it. There are two main reasons for not getting the first place in the exam: one is that the lifestyle and learning methods are incorrect, and the other is that there is no strong perseverance. Perseverance is the first important thing here, and learning methods are the second important.