The coordinates (r, θ) of the point in the polar coordinate system, where r represents the distance from the point to the origin, and θ represents the counterclockwise rotation angle from the positive and semi-axis of the X axis. For example, the point (2, π/3) can be drawn as follows: first, make a circle with the origin as the center and 2 as the radius, and then start from the intersection of the positive semi-axis of the X axis and this circle and rotate it counterclockwise by 60 degrees to get the position corresponding to the point (2, π/3).
Points on a plane can be represented by rectangular coordinate planes or polar coordinate planes.
In a sense, rectangular coordinate plane can be understood as "square" and polar coordinate plane can be understood as "circle". (Of course, it can extend to all directions infinitely. )