Eighth grade math calculation problems
1. Fill in the blanks: 2. (a-3)(3-2a)= _ _ _ _ _ _(3-a)(3-2a); 12. if m2-3m+2 = (m+a) (m+b), then a = _ _ _ _ _ _ and b = _ _ _ _15. when m = _ _ _ _ _, x2+2 (. Second, multiple-choice questions: 1. Among the following factorization results, the correct one is [] a.a2b+7ab-b = b (a2+7a) b.3x2y-3xy-6y = 3y (x-2) (x+1) c.8xyz-6x2y2 = 2xyz (4-3xy). A. (n-2) (m+m2) B. (n-2) (m-m2) C. M (n-2) (m+1) D. M (n-2) (m-1) 3. In the following equation. -4a2+9b2 = (-) The factor that can be decomposed by the square difference formula is [] A.A2+B2B. -A2+B2C。 B2D。 -(-A2)+B25。 If 9X2+Mxy+ 16Y2 is a completely flat road, then the value of m is [] A.- 12b. 24c。 12d。 126. The polynomial an+4-an+ 1 is decomposed into [] A.an (A4-a). B.an-1(a3-1) C.an+1(a-1) (a2-a+1) D.an+1(a-/. Given x2+y2+2x-6y+ 10 = 0, the values of x and y are [] a.x = respectively. y=3 B.x= 1,y=-3C.x=- 1,y=3 D.x= 1,Y =-39。 Decomposition of (m2+3m) 4-8 (m2+3m) 2+ 16 into [] A. (m+ 1) 4 (m+2) 2b. (m- 1)2(m-)2(m2+3m-2)2 10。 Factorization X2-7x-60, de [] A. (x-10) (x+6) B. (x+5) (x-12) C. (x+3) (x-20) D. (x De [] A. (a+11) (a-3) B. (a-11b) (a-3b) C. (a+1/kloc-0. [] A. (x2-2) (x2-1) B. (x2-2) (x+1) (x-1) C. (x2+2) (x2+1) D. The decomposable factor of the polynomial X2-AX-BX+AB is [] A.-(x+a) (x+b) B. (x-a) (x-a) C. (x-b) D. (x+a) (. The coefficient of the x2 term is 1, and the constant term is-12, which can decompose the factor. Such a quadratic trinomial is [] a.x2-11x-12 or x2+11x-/2b.x2-x-12 or. 0, x2+y-xy-x, x2-2x-y2+ 1, (x2+3x) 2-(2x+ 1) 2, without (x- 1) factor, with [] a./kloc-0. The factorization factor of 9-X2+ 12XY-36Y2 is [] A. (x-6Y+3. (x-6x-3)b .(x-6y+3)(x-6y-3)c .(x-6y+3)(x+6y-3)d .(x-6y+3)(x-6y+3)65433。 c x2+3xy-2x-6y =(x+3y)(x-2)d x2-6xy- 1+9 y2 =(x+3y+ 1)65438。 Then the relationship between a and b is [] A. reciprocal or negative reciprocal B. reciprocal C. equal number D. arbitrary rational number 20. Factorization X4+4, the correct conclusion is [] A. Factorization B cannot be decomposed. There is a factor x2+2x+2c. (xy+2)(xy-8)d .(xy-2)(xy-8)2 1。 The factorization of A4+2A2 B2+B4-A2B is [] a. 2b。 (A2+B2+AB)(A2+B2-AB)c .(A2-B2+AB)(A2-B2-AB)d .(A2+B2-AB)222。 -(3x- 1) (X+2Y) is the decomposition of which of the following polynomials? A.3x2+6xy-x-2yb.3x2-6xy+x-2yc.x+2y+3x2+6xy d.x+2y-3x2-6xy23.64a8-b2 is factorized into [] A. (64a4-b) (a4+b) B. (2y-3x) 2-2 (3x-2y)+ 1 The factorization is [] A. (3x-2y- 1) 2b. (3x+2y+ 1) 2c。 2 d. (2y-3x- 1) 226。 Decomposition of (a+b) 2-4 (a2-b2)+4 (a-b) 2 into [] A. (3a-b) 2b. (3b+a) 2c。 The factorization of (3 b-a. 2-2ab(a-c)(b+c)+B2(a-c)2 is [] a.c (a+b) 2b.c (a-b) 2c.c2 (a+b) 2d.c2 (a-b) 2. -1d.429. The decomposition factor 3a2x-4b2y-3b2x+4a2y is [] A.-(A2+B2) (3x+4y) B. (A-B) (A+B) (3x+4y) C. (A2 The correct one is [] A.2 (A+B-2C) B.2 (A+B+C) (A+B-C) C. (2A+B+4C) (2A+B-4C) D.2 (A+B+2C) (A+B-2C) III.2. 3 . x4-2y 4-2x3y+xy3; 4 . ABC(a2+B2+C2)-a3bc+2 ab2c 2; 5 . a2(b-c)+B2(c-a)+C2(a-b); 6.(x2-2x)2+2x(x-2)+ 1; 7.(x-y)2+ 12(y-x)z+36z 2; 8 . x2-4ax+8ab-4 B2; 9.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx); 10.( 1-a2)( 1-B2)-(a2- 1)2(B2- 1)2; 1 1.(x+ 1)2-9(x- 1)2; 12.4 a2 B2-(a2+B2-C2)2; 13 . ab2-ac2+4ac-4a; 14 . x3n+y3n; 15.(x+y)3+ 125; 16.(3m-2n)3+(3m+2n)3; 17 . X6(x2-y2)+y6(y2-x2); 18.8(x+y)3+ 1; 19.(a+b+c)3-a3-B3-C3; 20 . x2+4xy+3 y2; 2 1 . x2+ 18x- 144; 22 . x4+2 x2-8; 23.-M4+ 18 m2- 17; 24 . X5-2x 3-8x; 25 . x8+ 19x 5-2 16x 2; 26.(x2-7x)2+ 10(x2-7x)-24; 27.5+7(a+ 1)-6(a+ 1)2; 28.(x2+x)(x2+x- 1)-2; 29 . x2+y2-x2 y2-4xy- 1; 30.(x- 1)(x-2)(x-3)(x-4)-48; 3 1 . x2-y2-x-y; 32 . ax2-bx2-bx+ax-3a+3b; 33 . M4+m2+ 1; 34 . a2-B2+2ac+C2; 35 . a3-ab2+a-b; 36.625 B4-(a-b)4; 37 . X6-y6+3x2y 4-3x4y 2; 38 . x2+4xy+4 y2-2x-4y-35; 39 . m2-a2+4ab-4b 2; 40.5m -5n-m2+2mn-N2. Four. Proof (evaluation): 1. Given a+b = 0, find the value of a=k+3-2b3+a2b-2ab2. 2. Prove that the product of four consecutive natural numbers plus 1 must be a complete square number. 3.B = 2k+2, C = 3k- 1, and find the value of A2+B2+C2+2ab-2bc-2ac. 5. If x2+MX+n = (x-3) (x+4), find the value of (m+n) 2. 6. Why A? Compare the dimensions of 6xy and x2+9y2. 8. The square difference between two consecutive even numbers is a multiple of 4. Reference answer: 1. Fill in the blanks: 7.9, (3a- 1) 10. X-5Y,X-5Y,2A-B 10。 -1) 14.bc+ac, a+b, A-c 15.8 or -2, Multiple choice questions:1.b2.c3.c4.b5.b6.d7.a8.c9.d10.b1.c12.c13. 7. b 65538 factorization: 65438+(x-4a+2b).11.4 (2x-1) (2-x) .20. (x+3y) (x+y) .2 1。 (x-6) (x+24) Proof (evaluation): 2. Hint: Let four consecutive natural numbers be n, n+ 1, n+2 and n+36. Tip: A =- 18. ∴ A =- 18。 I downloaded this from Baidu Library before and never deleted it.