Set the coordinate system: the origin O is at point A, the Y axis is straight, the point B is in the first quadrant, and the point C is in the second quadrant. ?
Suppose angle BAT= angle CAT=P, AB=c, AC=b, BD=CE=d?
So: angle BAX=pai/2? -P; Angle CAX=pai/2? +P?
B point coordinates: B[c*cos(pai/2? -P)、c*sin(pai/2? -P)]=B[c*sinP,c*cosP]?
C point coordinates: C[b*cos(pai/2? +P)、b*sin(pai/2? +P)]=C[-b*sinP,b*cosP]?
D point coordinates: D[(c-d)cos(pai/2? -P),(c-b)sin(pai/2? -P)]=D[(c-d)sinP,(c-b)cosP]?
Point e coordinates: E[(c-d)cos(pai/2? +P),(c-b)sin(pai/2? +P)]=E[-(c-d)sinP,(c-b)cosP]?
Therefore, the coordinates of point m: m [(c * SINP-b * SINP)/2, (c * COSP+b * COSP)/2]?
Point n coordinates: n {[(c-d) SINP-(c-d) SINP]/2, [(c-b) COSP+(c-b) COSP]/2}?
=? N{(c*sinP-b*sinP)/2,[(c-b)cosP+(c-b)cosP]/2}?
The abscissas of point m and point n are equal. So: MN||AT?
Complete the certificate. ?
(2) Proof 2:? Please look at the pictures.
Complete the certificate.