Let f (x) = x2, limx->; 2 f(x)-f(2)/x-2=?
limx-& gt; Infinite quintic limit (2x-1) 3 (x2+2) 2/(1-2x).
1, f(x) =x3 Find d[f(e minus x)=?
f(e^-x)=(e^-x)3=e^(-3x)
df=-3e^(-3x)dx
2. let f (x) = x2, limx->; 2 f(x)-f(2)/x-2=?
lim [f(x)-f(2)]/(x-2)
x→2
=lim [x2-22]/(x-2)
x→2
=lim (x-2)(x+2)/(x-2)
x→2
=lim (x+2)
x→2
=2+2
=4
3. limx- > infinite quintic limit (2x-1) 3 (x2+2) 2/(1-2x).
lim(2x- 1)3×(x2+2)2/[( 1-2x)3×( 1-2x)2]
x→∞
= lim[(2x- 1)/( 1-2x)]3×[(x2+2)/( 1-2x)]2
x→∞
= lim[(2- 1/x)/( 1/x-2)]3×[( 1+2/x2)/( 1/x2-2/x)]2
x→∞
=[(2-0)/(0-2)]×[( 1+0)/(-0)]
=- 1×(-∞)
=+∞
Description:
When x→∞, x2 is the high-order infinity of x.
1/x2 is the higher order infinitesimal of1/x.
1/x2- 1/x & lt; 0