Let t= 1/x, t>- 1 and t is not equal to 0.
Only t & gtln( 1+t) needs to be proved.
Prove:
Constructor f(t)=t-ln( 1+t)
f '(t)= 1-( 1/( 1+t))
There are two situations:
(1) when t >; 0, 1+t & gt; 1,0 & lt; 1/( 1+t)& lt; 1, so there is always f' (t) >; 0
F(t) in t >; 0 is monotonically increasing, so f (t) >; F(0)=0 holds.
T & gtLn( 1+t) hold.
(2) When-1
0 & lt 1+t & lt; 1
1(1+t) >1,so f' (t) < 0.
f(x)in- 1; F(0)=0 holds.
T & gtLn( 1+t) hold.
Synthesis (1)(2) proves that when t>- 1 and t is not equal to 0.
T & gtLn( 1+t) hold.
This also proves that when x∈(-∞,-1)∩(0, +∞), 1/x >; Ln( 1+ 1/x) is maintained.
Method 2
Constructor f(t)=t-ln( 1+t)
f'(t)
= 1-( 1/ 1+t)
Let the derivative f'(t)=0.
1-( 1/ 1+t)=0
Find the unique extreme point t=0.
After testing, t=0 is the minimum point of function f(t).
So f(t)>=f
f(t)>=f(0)=0-ln 1=0
So t-ln (1+t) >: 0 is a constant, that is, t & gtLn( 1+t).