tanb=3,π& lt; b & lt3/2π
Available sinb=-(3√ 10)/ 10.
cosb=-(√ 10)/ 10
cos(a+b)=cosacosb-sinasinb
=( 1/2)*[-(√ 10)/ 10]-[-(√3)/2]*[- (3√ 10)/ 10]
=(-√ 10)/20-(3√30)/20
=-(√ 10+3√30)/20
2,k∈(- 1/2,0)a∈(-π/2,π/2)
sinacosa = k & lt0
Then a ∈ (-π/2,0)
In this range, Sina
Sina-COSA <; 0
1-2 Sina cosa = 1-2k( 1-2k & gt; 0)
(sina)^2-2sinacosa+(cosa)^2
=(sina-cosa)^2
= 1-2k
sina-cosa=-√( 1-2k)