a=2
a(n+ 1)= -2/an +2 + 1=3? -2/an=(3an-2)/an
a(n+ 1)- 1 =(3an-2-an)/an =(2an-2)/an = 2(an- 1)/an
a(n+ 1)-2 =(3an-2-2an)/an =(an-2)/an
[a(n+ 1)- 1]/[a(n+ 1)-2]= 2a(n- 1)/(an-2)
[a (n+1)-1]/[a (n+1)-2]/a (n-1)/(an-2) = 2, which is a fixed value.
(a 1- 1)/(a 1-2)=(3- 1)/(3-2)= 2
The sequence {(an- 1)/(an-2)} is a geometric series with 2 as the first term and 2 as the common ratio.
(an- 1)/(an-2)=2 2? =2?
an=(2? - 1)/(2? - 1)
When n= 1, a 1=(2? -1)/(2- 1)=3, which also satisfies the expression.
The general formula of the sequence {an} is an=(2? - 1)/(2? - 1)
dn=(2an-4)/(5an-7)
=[2(2? - 1)/(2? - 1) -4]/[5(2? - 1)/(2? - 1) -7]
=[2(2? - 1) -4(2? - 1)]/[5(2? - 1) -7(2? - 1)]
=2/(3 2? +2)
2? Constant > 0,2/(3 2? +2) constant > 0, dn>0
d 1 = 2/(3 ^ 2+2)=?
d(n+ 1)/dn=[2/(3 2? -2)]/[2/(3 2? +2)]
=(3 2? -2)/(3 2? -2)
=? (3 2? -4)/(3 2? -2)
=? (3 2? -2-2)/(3 2? -2)
=? ([ 1- 2/((3 2? -2)]
=? - 1/(3 2? -2)
& lt?
Tn=d 1+d2+...+dn
& lt? +? ? +...+?
=? ( 1-)/( 1-? )
=? ( 1-)
=? -
& lt?
& lt4/7
Inequality still exists.