x= 1+t/2
y=√3t/2
Substituting it into the parametric equation of curve C, we get
1+t/2=cosθ
√3t/2=sinθ
( 1+t/2)? +(√3t/2)? = 1
t? +t=0
Then t=0, t=- 1.
(1) intersection coordinates (1, 0) and (1/2, -√3/2).
(2) The slope of 2)OA line is 1/tanα.
The linear equation of OA is y=x/tanα.
The equation of the straight line l is: y=tanα x+ 1.
Coordinates of intersection p:
x = 1/( 1/tanα-tanα)= tanα( 1-tan? α)/
y= 1/( 1-tan? α)