∴ vector AC=a+b, 3|a|=2|b|,
∴OA=μ(AB+2AC)=μ(3a+2b),
On AD, the intercept AG=AB, and let the midpoint of BG be m, then
AM=( 1/2)(a+2b/3),
OA=(3μ/2)AM,
Let the midpoint of AB and CD be e and f respectively,
OE=λOF from OA+OB=λ(OC+OD),
∴O is the intersection point m of the straight line AM and EF.
∴λ= 1/2.