∴∠D=∠B=90,AB=AD=BC=CD,
In Rt△ABE and Rt△ADF,
∫AB = ADAE = AF,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF.
(2) The quadrilateral AEGF is a diamond.
Proof: ∫△ABE?△ADF,
∴∠BAE=∠DAF,
∵ quadrilateral ABCD is a square,
∴AC split ∠ Not good,
∴∠EAC=∠FAC,
AE = AF,
∴AO vertically divides EF,
∴OE=OF,
OG = OA,
∴ Quadrilateral AEGF is a parallelogram,
AE = AF,
A parallelogram is a diamond.
Pure hand tour, hope to accept.