Then the size of comparison m, n and p is the size of comparison 3A, A+2, 2A+ 1.
3a-(a+2)=2a-2
2a-3 >; because a> 1; 0,3a & gtA+2, that is, M> ordinary
a+2-(2a+ 1)= 1-a & lt; 0, so a+2
3a-(2a+ 1)= a- 1 & gt; 0, so 3a & gt2a+ 1, that is, m >;; p,
To sum up: M>P> is ordinary.