Current location - Training Enrollment Network - Mathematics courses - Mathematical requirements 4 All mathematical formulas
Mathematical requirements 4 All mathematical formulas
1, sine, cosine and tangent formulas of sum and difference of two angles, sine, cosine and tangent formulas of two angles;

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

tan(α+β)=(tanα+tanβ)/( 1-tanαtanβ)

tan(α-β)=(tanα-tanβ)/( 1+tanαtanβ)

sin2α

=

2sinαcosα

cos2α

=

(cosα)^2

-

(sinα)^2=2(cosα)^2

- 1= 1-2(sinα)^2

tan2α=2tanα/[ 1-(tanα)^2]

2, sine angle formula:

sin2α

=

2cosαsinα

Deduction: SIN2A = SIN (a+a) = SINA COSA+COSA SINA = 2 SINA COSA.

Extended formula: sin2a = 2sinacosa = 2tanacosa2 = 2tana/[1+tana2]

Cosine double angle formula:

The cosine double angle formula has three sets of expressions, which are equivalent:

1.cos2a=cosa^2-sina^2=[ 1-tana^2]/[ 1+tana^2]

2.Cos2a= 1-2Sina^2

3.Cos2a=2Cosa^2- 1

Deduction: cos2a = cos (a+a) = cosacosa-sinasina = (cosa) 2-(sina) 2 = 2 (cosa) 2-1

= 1-2(sinA)^2

Tangent dihedral formula:

tan2α=2tanα/[ 1-(tanα)^2]

Deduction: tan2a = tan (a+a) = (tana+tana)/(1-tanatana) = 2tana/[1-(tana) 2]

3. Auxiliary angle formula:

For the function of type acosx+bsinx, we can deform Acosx+BSINX = SQRT (A2+B2) (Acosx/SQRT (A2+B2)+BSINX/SQRT (A2+B2)) so that the point (b, a) is definite.

∴acosx+bsinx=sqrt(a^2+b^2)sin(x+arctan(a/b))

This is the auxiliary angle formula.

Let the formula to be proved be acosa+bsina = √ (a 2+b 2) sin (a+m).

(tanM=a/b)

The following is the proof process:

Let acosA+bsinA=xsin(A+M)

∴acosa+bsina=x((a/x)cosa+(b/x)sina)

Problem, (a/x) 2+(b/x) 2 = 1, SINM = a/x, COSM = B/X.

∴x=√(a^2+b^2)

∴acosA+bsinA=√(a^2+b^2)sin(A+M)

,tanM=sinM/cosM=a/b