18)
f(x)=x? -3x? -9x-5
1) The domain is the real number range r.
2) Deduction: f'(x)=3x? 6x 9
3) The stagnation point satisfies f'(x)=0.
So: 3x? -6x-9=0
x? -2x-3=0,(x-3)(x+ 1)=0
X=- 1 or x=3.
The pile numbers are (-1, 0) and (3,32).
4) Derive f'(x): f''(x)=6x-6.
So:
When x=- 1, f'' (- 1) =- 12.
When x=3, f'' (3) =12 > 0 is the minimum point, and the minimum value f(3)=-32.