From S20=S 10 (1):
2a 1+29d=0,
∫a 1 = 29,
∴d=-2
∴an=29+(-2)(n- 1)=3 1-2n,
∴Sn=n(a 1+an) /2
=-n^2+30n
=-(n- 15)2+225,
∴ When n= 15, the maximum value of Sn is 225.
(2): from s20 = s10: a1+a12+…+A20 = 0,
That is 5(a 15+a 16)=0, ①.
∵a 1=29>0,∴a 15>0,a 16