xdy/dx=ylny,
dy/(ylny)=dx/x,
ln(lny)=lnx+lnC,
lny=Cx,
Then the general solution of the differential equation xy'-ylny=0 is y = e (CX), where c is an integer constant.
(2)sinxdy+cosydx=0
= = & gtdy/cosy+dx/sinx=0
= = & gtdy/cosy+∫dx/sinx=0
= = & gtln │ secy+tany │-ln │ cscx+cotx │ = ln │ c │ (c is a non-zero constant)
= = & gt(secy+ Tani) /(cscx+cotx)=C
= = & gtsecy+ Tani =C(cscx+cotx)
The general solution of this equation is secy+tany=C(cscx+cotx).
(3) xy'=y(lny-lnx)
xy'/y=lny-lnx
x(lny)'=lny-lnx
x(lny)'-lny=-lnx
[x(lny)'-lny]/x? =-(lnx)/x?
[(lny)/x]'=-(lnx)/x?
Two-sided integrated:
(lny)/x= - ∫(lnx)/x? Advanced (short for deluxe)
=∫ (lnx) d( 1/x)
=(lnx)/x-∫ ( 1/x) d(lnx)
=(lnx)/x-∫( 1/x)*( 1/x)dx
=(lnx)/x+ 1/x+C
So:
lny=lnx+Cx+ 1