Prove:
Judging from the problem:
Angle EAD= Angle DAPFAB= BAP, FAE= EAD+ DAP+ FAB+ BAP= 180 degrees.
2 (angle DAP+ angle PAB)= 180 degrees; Angle DAB=90 degrees.
It can also be proved that angle ADC= angle DCB= angle CBA= angle BAD=90 degrees.
So the quadrilateral ABCD is a rectangle.
AD= root 3; AB= root 6; Therefore, BD=3.
Angle F= angle AFB= angle H= angle CQD, so AP is parallel to CQ.
Angle ABD= angle CDB;; Angle APB= angle CQD;; AB=DC
Triangle CDQ
BP = QD = BF = DH; DP=BQ=DE=BC
BD=PD+PB=PD+QD=ED+DH=EH=3
Area: 2(ABxAD)=3
Side length: 4EH= 12
end