Test center/site
Simplified calculation of trigonometric function.
analyse
SinA+2sinBcosC=0。 By using the triangle interior angle sum theorem and inductive formula, we can get: sin(B+C)+2sinBcosC=0, and expand it into: 3sinBcosC+cosBsinC=0, cosC≠0, cosb ≠ 0. So it can be judged that 3 tanb =-tanc. Tana =-tan (b+c) expansion substitution can be obtained by using the properties of basic inequalities.
explain
Solution: in triangle ABC, A+B+C = 180 Sina = SIN (B+C) is substituted into sinA+sinBcosC=0.
De: sin(B+C)+2sinBcosC=0。
∴:3sinBcosC+cosBsinC=0
∴:3sinBcosC=﹣cosBsinC
∴:3tanB=﹣tanC
sina+2sinbcosc=0,sina=﹣2sinbcosc>0
∴:sinBcosC 0
∴:cosC