sin(A-B)=sinAcosB-sinBcosA?
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/( 1-tanA tanB)
Tan (a-b) = (tana-tanb)/(1+tanatanb) From the above formula, the following double-angle formula can be derived.
tan2A=2tanA/[ 1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 - 1= 1-2(sina)^2
(The cosine above is very important)
sin2A=2sinA*cosA
3) Half-angle just remember this:
Tan(A/2)=( 1-cosA)/ Sina = Sina /( 1+cosA)
(4) The power reduction formula can be derived from the cosine of double angle.
(sinA)^2=( 1-cos2A)/2
(cosA)^2=( 1+cos2A)/2
5) Using the above power reduction formula, the following commonly used simplified formulas can be derived.
1-cosA=sin^(A/2)*2
1-sinA=cos^(A/2)*2
+
1) Formula for sum and difference of two angles (remember everything written)
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-sinBcosA?
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/( 1-tanA tanB)
tan(A-B)=(tanA-tanB)/( 1+tanA tanB)
2) From the above formula, the following double-angle formula can be derived.
tan2A=2tanA/[ 1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 - 1= 1-2(sina)^2
(The cosine above is very important)
sin2A=2sinA*cosA
3) Half-angle just remember this:
Tan(A/2)=( 1-cosA)/ Sina = Sina /( 1+cosA)
(4) The power reduction formula can be derived from the cosine of double angle.
(sinA)^2=( 1-cos2A)/2
(cosA)^2=( 1+cos2A)/2
5) Using the above power reduction formula, the following commonly used simplified formulas can be derived.
1-cosA=sin^(A/2)*2
1-sinA=cos^(A/2)*2
How about South China Normal University?
1, learning: First of all, if you want to apply to a normal school, you can still apply in Guangdong Pro