∠∠BOC is less than 2/5 (2/5) of the complementary angle of∠∠∠∠ AOB.
∴∠boc=∠aoc+∠boa=2/5( 180-∠AOB)-5 = 67-2/5∠boa
∫∠AOC is smaller than∝∞∠ BOC 10.
∴∠aoc=90-∠BOC- 10 = 80-∠BOC = 80-(∠AOC+∠boa)
∴∠AOC = 25 °, boa = 30°。
② When OB is within ∠AOC.
∠∠BOC is less than 2/5 (2/5) of the complementary angle of∠∠∠∠ AOB.
∴∠ BOC =∠ AOC-∠ BOA = 2/5 (180-∠ Bao Er) -5 = 67-2/5∠ Bao Er.
∫∠AOC is smaller than∝∞∠ BOC 10.
∴∠aoc=90-∠BOC- 10 = 80-∠BOC = 80-(∠AOC-∠boa)
No answer
③OC is within ∠AOB.
∠∠BOC is less than 2/5 (2/5) of the complementary angle of∠∠∠∠ AOB.
∴∠boc=∠boa-∠aoc=2/5( 180-∠AOB)-5 = 67-2/5∠boa
∫∠AOC is smaller than∝∞∠ BOC 10.
∴∠aoc=90-∠BOC- 10 = 80-∠BOC = 80-(∠boa-∠AOC)
∴∠AOC = 45 °, boa = 80°。