∴∠PAO=∠QPE
∫ rectangular AOEC
∴∠AOE=∠QEP
∴△AOP∽△PEQ
∴ao/pb=op/qb,3/x=(4-x)/(3-y)y = 1/3(x? -4X+9) (0≤X≤4)
(2) The coordinates of ∵ C are (4,3), ∴OB=4, BC=3, ∴ 5/3≤Y≤3, that is, Q cannot reach C.
According to the quadratic function Y= 1/3(X? -4X+9) (0≤X≤4), that is, Y= 1/3(X-2)? +5/3 (0 ≤ x ≤ 4) can get the vertex coordinates of (2,5/3). When X=2, y takes the minimum value of 5/3.