Postgraduate entrance examination mathematics outline 1:
Ordinary differential equation part
Examination requirements
1. Understand differential equations and their concepts such as order, solution, general solution, initial condition and special solution.
2. Master the solutions of differential equations with separable variables and first-order linear differential equations.
3. Homogeneous differential equations, Bernoulli equations and total differential equations can be solved, and some differential equations can be replaced by simple variables.
4. The following differential equations will be solved by order reduction method:.
5. Understand the properties and structure of solutions of linear differential equations.
6. Master the solution of second-order homogeneous linear differential equations with constant coefficients, and be able to solve some homogeneous linear differential equations with constant coefficients higher than the second order.
7. Polynomials, exponential functions, sine functions, cosine functions and their sum and product can be used to solve second-order non-homogeneous linear differential equations with constant coefficients.
8. Euler equation can be solved.
9. Can use differential equations to solve some simple application problems.