Current location - Training Enrollment Network - Mathematics courses - Four math examples are compulsory in senior one.
Four math examples are compulsory in senior one.
The first section is the basic relationship of trigonometric functions with the same angle.

Group a

1. It is known that sin α = 55, sin (α-β) =- 10 10, and both α and β are acute angles, then β is equal to _ _ _ _ _.

Analysis: ∵ α and β are acute angles, ∴-π 2.

∵sinα=55,∴cosα= 1-(55)2 = 255。

∴sinβ=sin[α-(α-β)]=sinαcos(α-β)-cosαsin(α-β)=22.

∫0 & lt; β& lt; π2, ∴ β = π4. Answer: π 4

2. Known 0

Analysis: ∫0

∴cosβ= cos[(α+β)-α]= cos(α+β)cosα+sin(α+β)sinα=(-45)×35+(-35)×45 =-2425。 Answer: -2425.

3. If tanα and tanβ are two of the equations x2-3x-3 = 0, then sin (α+β) cos (α-β) = _ _ _ _ _.

Analysis: tan α+tan β = 3, tan α tan β =-3, then sin (α+β) cos (α-β) = sin α cos β+cos α sin β cos α cos β+sin α sin β.

= tanα+tanβ 1+tanαtanβ= 3 1-3 =-32。 Answer: -32.

4.Cos (α-π 6)+sin α = 453, then the value of sin (α+7π 6) is _ _.

Analysis: From the known 32cosα+ 12sinα+sinα = 453, that is, 12cosα+32sinα = 45,

Sin (α+π 6) = 45,SIN (α+76 π) =-SIN (α+π 6) =-45。 Answer: -45.

5. (Original question) Define operation a? B = A2-AB-B2, so sinπ 12? cosπ 12=________。

Analysis: sinπ 12? cosπ 12 = sin 2π 12-sinπ 12-cos 2π 12 =-(cos 2π 12-sin 2π 12)- 12×2。

6. It is known that α∈(π2, π), sin α 2+cos α 2 = 62.

(1) Find the value of cosα; (2) If sin (α-β) =-35, β∈(π2, π), find the value of cosβ.

Solution: (1) Because sin α 2+cos α 2 = 62, when both sides are squared at the same time, sin α = 12.

π 2

(2) Because π 2

Sin (α-β) =-35,COS (α-β) = 45。

cosβ= cos[α-(α-β)]= cosαcos(α-β)+sinαsin(α-β)

=-32×45+ 12×(-35)=-43+3 10.

Group b

1.cos2α 1+sin2α? The value of 1+tan α 1-tan α is _ _ _ _ _.

Analysis: COS2α 1+SIN2α? 1+tanα 1-tanα= cos 2α-sin 2α(sinα+cosα)2? 1+tanα 1-tanα

=cosα-sinαsinα+cosα? 1+tanα 1-tanα= 1-tanα 1+tanα? 1+tanα 1-tanα= 1。

2.Cos (π 4+x) = 35, then the value of sin2x-2sin2x 1-tanx is _ _ _ _ _.

Analysis: ∫cos(π4+x)= 35, ∴ cosx-sinx = 352.

∴ 1-sin2x= 1825,sin2x=725,∴sin2x-2sin2x 1-tanx=2sinx(cosx-sinx)cosx-sinxcosx=sin2x=725.

3. It is known that cos (α+π 3) = sin (α-π 3), then tan α = _ _ _ _ _ _

Analysis: cos (α+π 3) = cos α cos π 3-sin α sin π 3 =12 cos α-32 sin α, sin (α-π 3).

= sinαcosπ3-cosαsinπ3 = 12 sinα-32 cosα,

From: (12+32) sin α = (12+32) cos α, tan α = 1

4. Let α ∈ (π4,3π4), β ∈ (0,π 4), COS (α-π 4) = 35, SIN (3 π 4+β) = 5 13, then SIN (α+β) = _ _ _.

Analysis: α ∈ (π 4,3 π 4), α-π 4 ∈ (0,π 2), while cos (α-π 4) = 35, ∴ sin (α-π 4) = 45.

∵β∈(0,π4),∴3π4+β∈(3π4,π).∵sin(3π4+β)=5 13,∴cos(3π4+β)=- 12 13,

∴sin(α+β)=-cos[(α-π4)+(3π4+β)]

=-cos(α-π4)? cos(3π4+β)+sin(α-π4)? sin(3π4+β)=-35×(- 12 13)+45×5 13 = 5665,

That is, sin (α+β) = 5665.

5. It is known that cos α = 13, cos (α+β) =- 13, α, β∈(0, π2), then the value of cos (α-β) is equal to _ _ _ _ _.

Analysis: √α∈(0, π2), ∴2α∈(0, π). ∫cosα= 13,∴ Cos2α = 2cos2α- 1 =-79。 ∴cos(α-β)=cos[2α-(α+β)]=cos2αcos(α+β)+sin2αsin(α+β)=(-79)×(- 13)+429×223=2327.

6. Given the angle α in the first quadrant and cosα= 35°, then1+2cos (2α-π 4) sin (α+π 2) = _ _ _ _ _.

Analysis: ∵ α is in the first quadrant, and COS α = 35 and ∴ SIN α = 45, then1+2cos (2α-π 4) sin (α+π 2) =1+2 (22cos2alpha+22sin2α) cos.

7. It is known that a = (cos2α, sinα), b = (1, 2sinα- 1), α∈(π2, π), if a? B = 25, then the value of tan (α+π 4) is _ _ _ _ _.

Analysis: a? B = cos2α+2sin2α-sinα =1-2sin2α+2sin2α-sinα =1-sinα = 25, ∴ sinα = 35, and α∈(π2, π), ∴ cosα.

8. The value of tan10tan70tan70-tan10+tan120 is _ _ _ _.

Analysis: tan (70-10) = tan 70-tan101+tan 70? tan 10 =3,

Therefore, tan 70-tan10 = 3 (1+tan 70tan10) is substituted into the algebraic expression:

tan 70 tan 10 3( 1+tan 70 tan 10)+tan 120 = tan 70 tan 10 3( 1+tan 70 tan 10)-3 = tan 70 tan 10 3 tan 70 tan 10 = 33。

9. When the terminal edge of a given angle α passes through point A (-1, 15), the value of sin (α+π 4) sin2alpha+cos2alpha+1is equal to _ _ _ _ _.

Analysis: ∫sinα+cosα≠0, cos α =- 14, ∴ sin (α+π 4) sin 2 α+cos 2 α+1= 24 cos α =-2.

10. evaluation: cos20 sin20? cos 10+3 sin 10 tan 70-2cos 40。

Solution: the original formula = cos 20 cos10sin20+3sin10sin70cos70-2cos40.

= cos 20 cos 10+3 sin 10 cos 20 sin 20-2cos 40

= cos 20(cos 10+3 sin 10)sin 20-2cos 40

= 2cos 20(cos 10 sin 30+sin 10 cos 30)sin 20-2cos 40

= 2 cos 20 sin 40-2 sin 20 cos 40 sin 20 = 2。

1 1. Given the directional quantity m = (2cosx2, 1), n = (sinx2, 1) (x ∈ r), let the function f (x) = m? n- 1。

(1) Find the range of function f(x); (2) The three internal angles of acute angle △ABC are called A, B and C respectively. If f (a) = 5 13 and f (b) = 35, find the value of f(C).

Solution: (1) f (x) = m? n- 1=(2cosx2, 1)? (sinx2, 1)- 1 = 2 cos x2 sin x2+ 1- 1 = sinx。

∵x∈R, ∴ The range of the function f(x) is [- 1, 1].

(2)∵f(a)=5 13,f(b)=35,∴sina=5 13,sinb=35.

∵A and B are acute angles, ∴ COSA =1-sin2a =1213, COSB = 1-SIN2B = 45.

∴f(c)=sinc=sin[π-(a+b)]=sin(a+b)=sinacosb+cosasinb

= 513× 45+1213× 35 = 5665. The value of ∴ f (c) is 5665.

12. Known: 0

(1) Find the value of sin2β; (2) Find the value of COS (α+π 4).

Solution: (1) Method 1: ∫ cos (β-π 4) = cos π 4 cos β+sin π 4 s in β = 22 cos β+22 sin β =13,

∴cosβ+sinβ=23,∴ 1+sin2β=29,∴sin2β=-79.

Method 2: sin2β = cos (π 2-2β) = 2cos2 (β-π 4)-1=-79.

(2)∵0 & lt; α& lt; π2 & lt; β& lt; π,∴π4<; β-π4 & lt; 3π4,π2 & lt; α+β& lt; 3π2,∴sin(β-π4)>; 0,cos(α+β)& lt; 0.

∵cos(β-π4)= 13,sin(α+β)=45,∴sin(β-π4)=223,cos(α+β)=-35.

∴cos(α+π4)=cos[(α+β)-(β-π4)]=cos(α+β)cos(β-π4)+sin(α+β)sin(β-π4)

=-35× 13+45×223=82-3 15.

The sum and difference of trigonometric functions in the second quarter: two angles and double angles

Group a

1. If sin α = 35, α ∈ (-π2, π2), then COS (α+5π 4) = _ _ _ _ _ _.

Analysis: Because α ∈ (-π2, π2) and sin α = 35, cos α = 45, it is obtained from the cosine formula of sum and difference of two angles: cos (α+5 π 4) =-22 (cos α-sin α) =-210.

2. Known π