1
3n
Then |a2n-a2n- 1|=
1
32n
,|a2n+2-a2n+ 1|=
1
32n+2
∵ sequence {a2n- 1} is a decreasing sequence, and {a2n} is an increasing sequence.
∴ a2n+ 1-a2n- 1 < 0, and a2n+2-a2n > 0,
Then -(a2n+2-a2n) < 0, and the two inequalities are added.
A2n+1-a2n-1-(a2n+2-a2n) < 0, that is, a2n-a2n-1< a2n+2-a2n+1,
∵|a2n-a2n- 1|=
1
32n
> |a2n+2-a2n+ 1|=
1
32n+2
∴ a2n-a2n- 1 < 0, that is, a2n-a2n- 1=-
1
32n
Similarly, A2n+3-A2n+2 < A2n+ 1-A2n,
| a2n+3-a2n+2 |
Then a2n+ 1-a2n=
1
32n+ 1
When the number of items in the sequence {an} is even, let n=2m(m∈N*),
a2-a 1=-
1
32
,a3-a2=
1
33
,…,a2m- 1-a2m-2=
1
32m- 1
,a2m-a2m- 1=-
1
32 meters
When these 2m- 1 equations are added together, a2m-a 1=- (
1
32
+
1
34
+…+
1
32 meters
)+(
1
33
+
1
35
+…+
1
32m- 1
),
∴a2m=a 1-
1
nine
( 1-
1
9m
)
1-
1
nine
+
1
27
( 1-
1
9m- 1
)
1-
1
nine
=
22
24
-
1
four
1
32 meters
.
∴ 12a 10= 12(
22
24
-
1
four
1
3 10
)= 1 1-
1
39
.
Therefore, choose: d.