Prove:
Because BD divides ∠ABC equally,
So ∠ PBC = ∠ ABC/2
Similarly ∠ PCB = ∠ ACB/2
Because PBC+PCB+BPC = 180.
So ∠ BPC = 180-∠ PBC-∠ PCB.
= 180-(∠ABC+∠ACB)/2
Because ∠ A+∠ ABC+∠ ACB = 180.
So ∠ ABC+∠ ACB =180-∠ A.
so∠BPC = 180-( 180-∠A)/2
=90 + 1/2∠A
The second picture:
Prove:
According to the internal angle and nature of the triangle:
∠ABC+∠ACB= 180 -∠A
∠BOC= 180 -(∠CBO+∠BCO)
Because BO and CO are the bisector of ∠ABC, the outer corner of ACB, DBC and ECB.
So ∠ DBO = ∠ CBO = ∠ CBD/2
ECO = ecology =∠BCE/2
So ∠ BOC = 180-(∠ CBO+∠ BCO)
= 180 -(∠CBD/2+∠BCE/2)
= 180 -(∠CBD+∠BCE)/2
Because ∠ CBD = 180-∠ ABC, ∠ BCE = 180-∠ ACB.
so∠BOC = 180-( 180-∠ABC+ 180-∠ACB)/2
=(∠ABC+∠ACB)/2
=( 180 -∠A)/2
So ∠ BOC = 90-1/2 ∠ A.
The third picture:
Proof: ∫2∠PCM = 2∠PBC+∠A,?
∴∠? PCM? =∠PBC? + 1/2∠A,?
∵∠PCM? =∠PBC? +∠BPC?
∴∠BPC= 1/2∠A。