Let u (x, t) = ∑ t (t) sin (n π x/l), and n =1.∞
Substituting into the normalized equation, the initial conditions are as follows
∑[T'(t)+(nπa/l)? T(t)]sin(nπx/l)=2sin(2x/l)
U(x,t)=∑T(0)sin(nπx/l)=0,T(0)=0。
Using the orthogonality of the function system {sin (n π x/l) | n = 0 ... on (0, l), there are
T'(t)+(nπa/l)? t(t)=(4/l)∫(0 ~ l)sin(nπx/l)sin(2x/l)dx
=(- 1)^n(4nπsin2)/[4-(nπ)? ]=q(n) (remember)
So T(t)=exp[-(nπa/l)? t]∫(0~t)q(n)exp[(nπa/l)? t]dt
=(l/nπa)? q(n){ 1-exp[-(nπa/l)? t]}
The definite solution u(x, t)=∑T(t)sin(nπx/l)
=∑(l/nπa)? q(n){ 1-exp[-(nπa/l)? t]}sin(nπx/l),n= 1..∞