=lim(x→∞)e^[((x- 1)/2)ln((x+3)/(x+6))]
=e^[ 1/2? lim(x→∞)(x- 1)ln((x+3)/(x+6))]
∫lim(x→∞)(x- 1)ln((x+3)/(x+6))
= lim(x→∞)ln((x+3)/(x+6))/[ 1/(x- 1)]
type 0/0(lim(x→∞)ln((x+3)/(x+6))= lim(x→∞)ln( 1-3/(x+6))= ln 1 = 0)。 For L'H?pital, the upper and lower derivatives are simultaneous.
=lim(x→∞) ((x+6)/(x+3))? ((x+3)/(x+6))'/[ 1/(x- 1)]'
PS: Pay attention to the derivation of (ln ((x+3)/(x+6))' composite function.
= lim(x→∞) 1/((x+3)(x+6))/[- 1/(x- 1)^2]
=lim(x→∞)(x- 1)^2/((x+3)(x+6))
= lim (x →∞) (x2-2x+1)/(x2+9x+18) See the coefficient ratio before the highest term for the rational fraction. The denominator contains the highest term, and the coefficient before x 2 is 1. The score of 1 contains the coefficients before x 2.
= 1
∴ Original formula = e (1/2? 1)=e^ 1/2
2.∫(0→ 1)(x^2+x-2)e^xdx
=∫(0→ 1)x? dx+∫(0→ 1)xdx-2∫(0→ 1)e^xdx
=[(x? e^x)|(0→ 1)-∫(0→ 1)e^xdx? ]+∫(0→ 1)xdx-2∫(0→ 1)e^xdx
=[(x? e^x)|(0→ 1)-2∫(0→ 1)xe^xdx]+∫(0→ 1)xdx-2e^x|(0→ 1)
=(x? e^x)|(0→ 1)-∫(0→ 1)xe^xdx -2e^x|(0→ 1)
=(x? e^x)|(0→ 1)-∫(0→ 1)xde^x -2e^x|(0→ 1)
=(x? e^x)|(0→ 1)-[xe^x |(0→ 1)-∫(0→ 1)e^xdx]-2e^x|(0→ 1)
=(x? e^x)|(0→ 1)-xe^x |(0→ 1)+e^x|(0→ 1)-2e^x|(0→ 1)
=(x? e^x)|(0→ 1)-xe^x |(0→ 1)-e^x|(0→ 1)
=2e-2
3. according to the meaning of the question dA=x? Advanced (short for deluxe)
A=∫(a→(a+ 1))x? Advanced (short for deluxe)
=x? /3|(a→(a+ 1))
=((a+ 1)? -a? )/3
=((a+ 1)-a)((a+ 1)? +a(a+ 1)+a? )/3
=(3a? +3a+ 1)/3
=a? +a+ 1/3
=(a+ 1/2)? + 1/ 12
When a=- 1/2. Amin =112
At this time dV=∏(x? )? dx=∏x^4dx
v=∫(- 1/2→ 1/2)∏x^4dx
=∏/5 ? x^5|(- 1/2→ 1/2)
=∏/80