∴∠AOB=80 +20 = 100。
∫OM is the bisector of ∞∠AOB.
∴∠AOM= 100 ÷2=50。
And ∵ON is the bisector of ∠AOC, ∠ AOC = 80.
∴∠AON=80 ÷2=40。
∴∠mon=∠aom-∠aon=50-. 40 = 10。
(2)∫∠AOC = 80,∠BOC=x。
∴∠AOB=80 +x
And ∵OM is the angular bisector of ∠AOB.
∴∠AOM=(80 +x )÷2=40 +x/2
And ∵ON is the bisector of ∠AOC, ∠ AOC = 80.
∴∠AON=80 ÷2=40
∴∠mon=∠aom-∠aon=(40+x/2)-40 = x/2
(3)∫∠AOC = m,∠BOC=x。
∴∠AOB=m +x
And ∵OM is the angular bisector of ∠AOB.
∴∠AOM=(m +x )÷2=(m+x)/2
And ∵ON is the bisector of ∠AOC, ∠ AOC = m.
∴∠AON=m/2
∴∠mon=∠aom-∠aon=(m+x)/2—m/2 = x/2
(4) The degree ∠ mon is related to ∠BOC.
Degree ∠MON is ∠BOC's 1/2.
Using letters to represent numbers can clearly show the relationship between two numbers.