Current location - Training Enrollment Network - Mathematics courses - Higher mathematics problems
Higher mathematics problems
1。 Given 2+xy = e (xy), find y'.

Scheme 1: Derive with implicit function derivation formula:

The function F(x, y) = 2+xy-e (xy) = 0.

So dy/dx=- (? F/? x)/(? F/? y)=-[y-ye^(xy)]/[x-xe^(xy)]=-y/x;

Solution 2: Direct deduction:

y+xy'=e^(xy)(y+xy'); x[ 1-e^(xy)]=-y[ 1-e^(xy)]; So y' =-y/x;

2。 Seek the limit

( 1) x? π/4lim(tanx)^(tan2x)=x? π/4lime^[(tan2x)ln(tanx)]

=x? π/4lime^[2(tanx)ln(tanx)/( 1-tan? The exponent of x)]e is 0/0, and Robita's law is used in the exponent.

=x? π/4lime^[2(sec? x)ln(tanx)+sec? x]/[-2tanxsec? x]

=x? π/4lime^[ln(tanx)+ 1]/(-tanx)=e= 1/e.

(2)x? 0+lim(x? lnx)=x? 0+lim[(lnx)/(x)]=x? 0+lim[( 1/x)/(-nx)=x? 0+lim[ 1/(-nx)]

=x? 0+lim[x? /(-n)]=0

(3)x? 0+lim(cotx)^( 1/lnx)=x? 0+lime^[(lncotx)/lnx]=x? 0+lime^(-xcsc? x/cotx)

=x? 0+lime^[(-xcscx)/cosx]=x? 0+lime^[(-x/sinx)/cosx]=x? 0+lime^[- 1/cosx]=e= 1/e

(4)x? 0+lim[x? e^( 1/x? )]=x? 0+lim[e^( 1/x? )]/(x)=x? 0+lim[(-2x)e^( 1/x? )]/(-2x)

=x? 0+lime^( 1/x? )=+∞

(4)x? ∞lim( 1+a/x)^x=x? ∞lim[( 1+a/x)^(x/a)]^a=(x/a)? ∞lim[( 1+a/x)^(x/a)]^a=e^a

(5)x? ∞lim[(sinx)/x]=0sinx is a bounded function.