sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(2π-a)=cos(a)
cos(2π-a)=sin(a)
sin(2π+a)=cos(a)
cos(2π+a)=-sin(a)
sin(π-a)=sin(a)
cos(π-a)=-cos(a)
sin(π+a)=-sin(a)
cos(π+a)=-cos(a)
tgA=tanA=sinAcosA
2. The trigonometric function of the sum and difference of two angles
sin(a+b)= sin(a)cos(b)+cos(α)sin(b)
cos(a+b)= cos(a)cos(b)-sin(a)sin(b)
sin(a-b)= sin(a)cos(b)-cos(a)sin(b)
cos(a-b)= cos(a)cos(b)+sin(a)sin(b)
tan(a+b)= tan(a)+tan(b) 1-tan(a)tan(b)
tan(a-b)= tan(a)-tan(b) 1+tan(a)tan(b)
3. Sum-difference product formula
sin(a)+sin(b)= 2s in(a+B2)cos(a-B2)
Crime (1)? sin(b)=2cos(a+b2)
cos(a)+cos(b)= 2cos(a+B2)cos(a-B2)
cos(a)-cos(b)=-2s in(a+B2)sin(a-B2)
4. Sum and difference formula of products (the above formula is obtained in reverse)
sin(a)sin(b)=- 12? [cos(a+b)-cos(a-b)]
cos(a)cos(b)= 12? [cos(a+b)+cos(a-b)]
sin(a)cos(b)= 12? [sin(a+b)+sin(a-b)]
5. Double angle formula
sin(2a)=2sin(a)cos(a)
cos(2a)= cos 2(a)-sin 2(a)= 2cos 2(a)- 1 = 1-2 sin 2(a)
6. Half-angle formula
sin2(a2)= 1-cos(a)2
cos2(a2)= 1+cos(a)2
tan(a2)= 1-cos(a)sin(a)= Sina 1+cos(a)
7. General formula
sin(a)=2tan(a2) 1+tan2(a2)
cos(a)= 1-tan 2(a2) 1+tan 2(a2)
tan(a)=2tan(a2) 1-tan2(a2)
8. Other Formulas (Derived)
Answer? Sin (a)+b? Cos(a)=a2+b2sin(a+c) where tan(c)=ba.
Answer? Crime (A)-B? Cos(a)=a2+b2cos(a-c) where tan(c)=ab.
1+sin(a)=(sin(a2)+cos(a2))2
1-sin(a)=(sin(a2)-cos(a2))2
csc(a)= 1sin(a)
Seconds (a)= 1 cosine (a)