1.
When x= 1/20 1 1, (1-x 2)/(1+x 2) = [1-(1/20).
When x=20 1 1, (1-x2)/(1+x2) = (1-20112)/(65432)
These two figures add up to 0.
And so on:
When x= 1/20 1 1, the sum of the score and the score when x=20 1 1 is also 0. ...
And when x= 1, (1-x 2)/(1+x 2) = (1-12)/(1+/kloc-0)
Then the result adds up to 0.
2.
∵a^2+4a+ 1=0
∴a^4+4a^3+a^2=0, 19a^3+76a^2+ 19a=0,-a^2-4a- 1=0
∵(a^4+ma^2+ 1)/(3a^3+ma^2+3a)=5
∴a^4+ma^2+ 1=5(3a^3+ma^2+3a)= 15a^3+5ma^2+ 15a
∴a^4- 15a^3-4ma^2- 15a+ 1=0
∴(a^4+4a^3+a^2)- 19a^3-(4m+ 1)a^2- 15a+ 1=0
∴ 19a^3+(4m+ 1)a^2+ 15a- 1=0
∴( 19a^3+76a^2+ 19a)+(4m-75)a^2-4a- 1=0
∴(4m-75)a^2-4a- 1=0
∵-a^2-4a- 1=0
∴4m-75=- 1
∴4m=74
∴m=37/2.
Are you satisfied, landlord?