Current location - Training Enrollment Network - Mathematics courses - Solving the domain of higher mathematical function
Solving the domain of higher mathematical function
Find the domain of function

( 1)。 y=x/(x? +3x+2)= x/(x+ 1)(x+2); ∴ domains are: x≦- 1 and x ≦-2;

That is, x∈(-∞,-1)∨(- 1, -2)∨(-2, +∞);

(2)。 y=ln(x+3)+√(x? - 1);

To x+3 >; 0,x & gt-3.........①; Shit, x? -1≧0, x≦- 1 or x≧ 1............②.

①∩②={x∣-3<; x≦- 1}∪{x∣x≧ 1};

(3).y = arctan(x-2); From-1≤x-2≤ 1, we get1≤ x ≤ 3;

(4).y =( 1/x)√[( 1-x)/( 1+x)];

x≠0.........①; x≦- 1..........②; (1-x)/( 1+x)≧0, namely (x- 1)/(x+ 1)≦0, namely-1

①∩②∩③={x∣- 1<; x & lt0}∪{x∣0<; x≤ 1 };

(5)。 y=√(x√x)=√(√x? )=x^(3/4); ∴ The domain is: x ≧ 0; X∈[0,+∞);