sin2A=2sinA cosA
cos2a=cos^2 a-sin^2 a= 1-2sin^2 a=2cos^2 a- 1
tan2A=(2tanA)/( 1-tan^2 A)
Triple angle formula
sin3α=4sinα sin(π/3+α)sin(π/3-α)
cos3α=4cosα cos(π/3+α)cos(π/3-α)
tan3a = tan a tan(π/3+a) tan(π/3-a)
half-angle formula
tan(A/2)=( 1-cosA)/sinA = sinA/( 1+cosA);
cot(A/2)= sinA/( 1-cosA)=( 1+cosA)/sinA。
sin^2(a/2)=( 1-cos(a))/2
cos^2(a/2)=( 1+cos(a))/2
tan(a/2)=( 1-cos(a))/sin(a)= sin(a)/( 1+cos(a))
Sum difference product
sinθ+sinφ= 2 sin[(θ+φ)/2]cos[(θ-φ)/2]
sinθ-sinφ= 2 cos[(θ+φ)/2]sin[(θ-φ)/2]
cosθ+cosφ= 2 cos[(θ+φ)/2]cos[(θ-φ)/2]
cosθ-cosφ=-2 sin[(θ+φ)/2]sin[(θ-φ)/2]
tanA+tanB = sin(A+B)/cosa cosb = tan(A+B)( 1-tanA tanB)
tanA-tanB = sin(A-B)/cosa cosb = tan(A-B)( 1+tanA tanB)
Sum difference product
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ -cosαsinβ
Sum and difference of products
sinαsinβ = [cos(α-β)-cos(α+β)] /2
cosαcosβ = [cos(α+β)+cos(α-β)]/2
sinαcosβ = [sin(α+β)+sin(α-β)]/2
cosαsinβ = [sin(α+β)-sin(α-β)]/2
Inductive formula
Sine (-α) =-Sine α
cos(-α) = cosα
tan (-α)=-tanα
sin(π/2-α) = cosα
cos(π/2-α) = sinα
sin(π/2+α) = cosα
cos(π/2+α) = -sinα
Sine (π-α) = Sine α
cos(π-α) = -cosα
Sine (π+α) =-Sine α
cos(π+α) = -cosα
tanA= sinA/cosA
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
tan(π-α)=-tanα
tan(π+α)=tanα
Other formulas
( 1)(sinα)^2+(cosα)^2= 1
(2) 1+(tanα)^2=(secα)^2
(3) 1+(cotα)^2=(cscα)^2
(4) For any non-right triangle, there is always tana+tanbtana+tanb+tanc = tanatanbtanc.
(5)cotAcotB+cotAcotC+cotbctc = 1
(6) Cost (A/2)+ Cost (B/2)+ Cost (C/2)= Cost (A/2) Cost (B/2)
(7)(cosa)^2+(cosb)^2+(cosc)^2= 1-2cosacosbcosc
(8)(sina)^2+(sinb)^2+(sinc)^2=2+2cosacosbcosc