Let x-a = asecu, then x = a (1+secu), dx = asecutanudu.
I =∫& lt; -π,0 & gta( 1+secu)atanu asecutanu du
= a^3∫& lt; -π, 0> secu (1+secu) (tanu) 2 du
= a^3∫& lt; -π, 0 > Du
= a^3∫& lt; -π, 0 > Du
= a^3∫& lt; -π, 0 > [(SECU) 4+(SECU) 3-(SECU) 2-SECU) Du
= a^3[∫& lt; -π,0 & gt(secu)^4du+∫& lt; -π,0 & gt(secu)^3du - 0 - 0)
= a^3[∫& lt; -π,0 & gt(secu)^4du+∫& lt; -π,0 & gt(secu)^3du)
I 1 =∫& lt; -π,0 & gt(secu)^4du =∫& lt; -π,0 & gt[ 1+ (tanu)^2]dtanu = 0
I2 =∫& lt; -π,0 & gt(secu)^3du =∫& lt; -π,0 & gtsecudtanu
=[secutanu]& lt; -π,0 & gt-∫& lt; -π,0 & gtsecu(tanu)^2du
= 0-∫& lt; -π,0 & gt(secu)^3du+∫& lt; -π, 0> Sekudu
= -I2 + 0
I2 = 0 is obtained.
I = 0