The domain of the inverse function is the domain of the original function.
∫t =(x+ 1)/(x- 1)=(x- 1+2)/(x- 1)= 1+2/(x- 1)
∵x & gt; 1
∴ t= 1+2/(x- 1)> 1
∴y = ln[(x+ 1)/(x- 1)]= lnt & gt; 0
That is, the value range of the original function is (0, +∞).
The x range of the inverse function is (0, +∞).