As can be seen from the figure 1, O is the midpoint of BC and is connected with AO.
Then AO=OC, ∠ Bao = 45.
∠∠FOC = 180-∠EOF-∠EOB
∠ EOF = 90 ∠ FOC = 90-∠ EOB。
∠ AOE = 90-∠ EOB。
∴∠AOE=∠FOC
∠∠boa =∠foc = 45。
AO=OC
∴△AOE≌△COF
∴AE=FC。
The second question: first prove the similarity, and then calculate it in proportion.
Connecting AO
∠FOC=90 -∠AOF=90 -(∠EOF-∠AOE)
=45 +∠AOE
∠∠ Bao = 45, ∠ Bao +∠AOE=∠BEO.
∴∠FOC=∠BEO
∠∠B =∠C
∴△BEO∽△COF
BE:CO=BO:CF
BE=x,CF=y
Y=2/x, (0 < x