Cosine theorem C 2 = A 2+B 2-2 ABCOSC
Substitute 2s = (a+b) 2-c 2.
Get absinC=2ab+2abcosC。
sinC = 2+2 OSC
Because (sinc) 2+(cosc) 2 = 1.
CosC=-3/5 sinC=4/5 tanC=-4/3。
Or cosC=- 1 sinC=0.
So tanC=-4/3
2. Solution: LGA-LGC = LG SINB =-LG radical 2
= & gtA/c=sinB= 1/ root number 2
= & gtB=45 degrees
Sine theorem sinA/sinC=a/c= 1/ root number 2.
= & gtSinC= radical number 2*sinA=sin(A+B)=(sinA+cosA)/ radical number 2.
=> Sina =cosA
= & gtA=45 degrees
So C= 180-A-B=90 degrees.
Therefore, a triangle is an isosceles right triangle.
3. Solution: By trigonometric function and sine and cosine theorem
sinC=sin(2A)=2sinAcosA
sinC/sinA=2cosA=3/2
a/sinA=c/sinC
c/a=sinC/sinA=3/2
c=3a/2
a+c= 10
a+3a/2= 10
a=4,c=6
b^2+c^2-a^2=2bccosA
b^2+36- 16=2b*6*3/4
b^2-9b+20=0
(b-4)(b-5)=0
B=4 or b=5.
But if b=4, then a=b=4, then the triangle is an isosceles triangle, and a = b = (1/2) c.
Then A+B+C=4A= 180, so a = b = 45 and c = 90. The triangle at this time is an isosceles right triangle.
But a 2+b 2 = 32, c 2 = 36, a 2+b 2 ≠ c 2,
From the inverse theorem of Pythagorean theorem, we know that a triangle is not a right triangle, which is contradictory!
So b=5(b=4 give up! )