|PF 1|+|PF2|= 10
|F 1F2|=8
∫≈f 1pf 2 = 90
∴△F 1PF2 is a right triangle with a hypotenuse of |F 1F2|.
That is |PF 1|? +|PF2|? =|F 1F2|?
∴(|PF 1|+|PF2|)? -2 | pf 1 |×| PF2 | = | f 1 F2 |?
∴ 10? -4×( 1/2)| pf 1 |×| PF2 | = 8?
∴36-4S△F 1PF2=0
∴S△F 1PF2=9
Therefore, the area of Rt△F 1PF2 is 9.
(2)∵|PF 1|? +|PF2|? ≥2|PF 1|×|PF2|
∴|PF 1|? +|PF2|? +2 | pf 1 |×| PF2 |≥4 | pf 1 |×| PF2 |
∴(|PF 1|+|PF2|)? ≥4|PF 1|×|PF2|
∴|pf 1|×|pf2|≤(|pf 1|+|pf2|)? /4
From (1), we know | pf 1 |+pf2 | = 10.
Then |PF 1|×|PF2|≤25
∴ When |PF 1|=|PF2|, i.e. |PF 1|=|PF2|=5, "=" is obtained. At this time |PF 1|×|PF2| has a maximum value of 25.