= & gtm^2+n^2 = 1 ( 1)
OA。 OC = |OA||OC|cos(π/4)
(m,n,0)。 ( 1, 1, 1) = 1.√3 ( √2/2)
m+n = √6/2 (2)
Sub (2) becomes (1)
m^2 +(√6/2-m)^2 = 1
4m^2 - 2√6m + 1 =0
M = (√6 +√2)/4 or (√6 -√2)/4.
When m= (√6 +√2)/4, n= (√6 -√2)/4.
When m= (√6 -√2)/4, n= (√6 +√2)/4.
OA =(√6 +√2)/4, (√ 6-√ 2)/4,0) or (√ 6-√ 2)/4,0)
Similarly,
Died in OC = |OB||OC|cos(π/4)
(0,n,p)。 ( 1, 1, 1) = 1.√3 (√2/2)
n+p = √6/2
p = √6/2 - n
When n = (√6 -√2)/4, p=(√6 +√2)/4.
When n = (√6 +√2)/4, p=(√6 -√2)/4.
OB =(0, (√6 -√2)/4, (√6 +√2)/4) or (0, (√6 +√2)/4)