I=∫(π:0)xdx∫(x:0)cos(x+y)dy
=∫(π:0)[(sin(x+y)|(x:0)]xdx
=∫(π:0)(xsin2x-xsinx)dx
=-x(cos2x)/2+(sin2x)/4+xcosx-sinx |(π:0)
=-3π/2
Supplement to the question:
Omit the upper and lower limits for the sake of form.
∫(xsin 2x-xsinx)dx =∫(xsin 2x)dx-∫(xsinx)dx
Integration by parts: (refer to page 352 (1). This book should be used by the landlord.
The previous part:
∫(xsin 2x)dx =-x(cos2x)/2-∫(- 1/2)cos2xdx =-x(cos2x)/2+(sin2x)/4
The second half
∫(xsin x)dx =-xcos x-∫cosx dx =-xcos x+sinx
The process in the book is more troublesome. I usually use this method:
Divide xsinx by (1)*(2)
sinx( 1).....x(2)
-cosx(3).... 1(4)
(1) to (3) take the integral and (2) to (4) take the derivative.
∫(xsinx)dx =(2)*(3)-(3)(4)dx = ... (omitted)